Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Sci Technol ; 56(22): 15607-15616, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36315940

RESUMEN

Tire and road wear particles (TRWP) account for an important part of the polymer particles released into the environment. There are scientific knowledge gaps as to the potential bioaccessibility of chemicals associated with TRWP to aquatic organisms. This study investigated the solubilization and bioaccessibility of seven of the most widely used tire-associated organic chemicals and four of their degradation products from cryogenically milled tire tread (CMTT) into fish digestive fluids using an in vitro digestion model based on Oncorhynchus mykiss. Our results showed that 0.06-44.1% of the selected compounds were rapidly solubilized into simulated gastric and intestinal fluids within a typical gut transit time for fish (3 h in gastric and 24 h in intestinal fluids). The environmentally realistic scenario of coingestion of CMTT and fish prey was explored using ground Gammarus pulex. Coingestion caused compound-specific changes in solubilization, either increasing or decreasing the compounds' bioaccessibility in simulated gut fluids compared to CMTT alone. Our results emphasize that tire-associated compounds become accessible in a digestive milieu and should be studied further with respect to their bioaccumulation and toxicological effects upon passage of intestinal epithelial cells.


Asunto(s)
Anfípodos , Compuestos Orgánicos , Animales , Cinética , Peces
2.
Environ Toxicol Chem ; 41(10): 2512-2526, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35876436

RESUMEN

Estrogens are released to the aquatic environment by wastewater treatment plant (WWTP) effluents and can affect wildlife. In the last three decades, many in vitro assay platforms have been developed to detect and quantify estrogenicity in water. In 2018, the International Organization for Standardization (ISO) standardized protocols became available for three types of in vitro estrogen receptor transactivation assays (ERTAs) detecting estrogenicity in 96-well plates (ISO19040 1-3). Two ERTAs-lyticase Yeast Estrogen Screen (L-YES) and Arxula YES (A-YES)-use genetically modified yeast strains, whereas the third utilizes stably transfected human cells. One human cell based assay is ERα-CALUX, which is based on a genetically modified human bone osteosarcoma cell line. In the present study, we characterized the performance, comparability, and effectiveness of these three ERTAs, including an evaluation involving proposed water quality thresholds (effect-based trigger values [EBTs]). For a robust evaluation, we collected 52 effluent samples over three sampling campaigns at 15 different WWTPs in Switzerland. Estrogen receptor transactivation assay results were correlated and compared with results from chemical analysis targeting known estrogens. The three ERTAs showed comparable data over all campaigns. However, the selection of EBTs plays a significant role in the interpretation and comparison of bioassay results to distinguish between acceptable and unacceptable water quality. Applying a fixed cross-assay EBT for effluent of 4 ng L-1 resulted in varying numbers of threshold exceedances ranging between zero and four samples depending on the ERTA used. Using assay-specific EBTs showed exceedances in eight samples (ERα-CALUX) and in one sample (A-YES), respectively. Thus, proposed EBTs do not produce similar risk profiles across samples and further refinement of assay-specific EBTs is needed to account for assay-specific differences and to enable the application of ERTAs as effect-based methods in environmental monitoring. Environ Toxicol Chem 2022;41:2512-2526. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Receptor alfa de Estrógeno , Contaminantes Químicos del Agua , Bioensayo/métodos , Monitoreo del Ambiente/métodos , Estradiol/análisis , Receptor alfa de Estrógeno/metabolismo , Estrógenos/análisis , Estrógenos/toxicidad , Estrona/análisis , Humanos , Receptores de Estrógenos/metabolismo , Estándares de Referencia , Saccharomyces cerevisiae/metabolismo , Activación Transcripcional , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Water Res ; 212: 118084, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114528

RESUMEN

Micropollutants present in the effluent of wastewater treatment plants (WWTPs) after biological treatment are largely eliminated by effective advanced technologies such as ozonation. Discharge of contaminants into freshwater ecosystems can thus be minimized, while simultaneously protecting drinking water resources. However, ozonation can lead to reactive and potentially toxic transformation products. To remove these, the Swiss Federal Office for the Environment recommends additional "post-treatment" of ozonated WWTP effluent using sand filtration, but other treatments may be similarly effective. In this study, 48 h composite wastewater samples were collected before and after full-scale ozonation, and after post-treatments (full-scale sand filtration, pilot-scale fresh and pre-loaded granular activated carbon, and fixed and moving beds). Ecotoxicological tests were performed to quantify the changes in water quality following different treatment steps. These included standard in vitro bioassays for the detection of endocrine, genotoxic and mutagenic effects, as well as toxicity to green algae and bacteria, and flow-through in vivo bioassays using oligochaetes and early life stages of rainbow trout. Results show that ozonation reduced a number of ecotoxicological effects of biologically treated wastewater by 66 - 93%: It improved growth and photosynthesis of green algae, decreased toxicity to luminescent bacteria, reduced concentrations of hormonally active contaminants and significantly changed expression of biomarker genes in rainbow trout liver. Bioassay results showed that ozonation did not produce problematic levels of reaction products overall. Small increases in toxicity observed in a few samples were reduced or eliminated by post-treatments. However, only relatively fresh granular activated carbon (analyzed at 13,000 - 20,000 bed volumes) significantly reduced effects additionally (by up to 66%) compared to ozonation alone. Inhibition of algal photosynthesis, rainbow trout liver histopathology and biomarker gene expression proved to be sufficiently sensitive endpoints to detect the change in water quality achieved by post-treatment.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Bioensayo , Ecosistema , Eliminación de Residuos Líquidos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Environ Int ; 159: 107033, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34979407

RESUMEN

Three steroidal estrogens, 17α-ethinylestradiol (EE2), 17ß-estradiol (E2), estrone (E1), and the non-steroidal anti-inflammatory drug (NSAID), diclofenac have been included in the first Watch List of the Water Framework Directive (WFD, EU Directive 2000/60/EC, EU Implementing Decision 2015/495). This triggered the need for more EU-wide surface water monitoring data on these micropollutants, before they can be considered for inclusion in the list of priority substances regularly monitored in aquatic ecosystems. The revision of the priority substance list of the WFD offers the opportunity to incorporate more holistic bioanalytical approaches, such as effect-based monitoring, alongside single substance chemical monitoring. Effect-based methods (EBMs) are able to measure total biological activities (e.g., estrogenic activity or cyxlooxygenase [COX]-inhibition) of specific group of substances (such as estrogens and NSAIDs) in the aquatic environment at low concentrations (pg/L). This makes them potential tools for a cost-effective and ecotoxicologically comprehensive water quality assessment. In parallel, the use of such methods could build a bridge from chemical status assessments towards ecological status assessments by adressing mixture effects for relevant modes of action. Our study aimed to assess the suitability of implementing EBMs in the WFD, by conducting a large-scale sampling and analysis campaign of more than 70 surface waters across Europe. This resulted in the generation of high-quality chemical and effect-based monitoring data for the selected Watch List substances. Overall, water samples contained low estrogenicity (0.01-1.3 ng E2-Equivalent/L) and a range of COX-inhibition activity similar to previously reported levels (12-1600 ng Diclofenac-Equivalent/L). Comparison between effect-based and conventional analytical chemical methods showed that the chemical analytical approach for steroidal estrogens resulted in more (76%) non-quantifiable data, i.e., concentrations were below detection limits, compared to the EBMs (28%). These results demonstrate the excellent and sensitive screening capability of EBMs.


Asunto(s)
Diclofenaco , Contaminantes Químicos del Agua , Diclofenaco/toxicidad , Ecosistema , Monitoreo del Ambiente/métodos , Estradiol/análisis , Estrógenos/análisis , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 55(23): 15788-15796, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34807574

RESUMEN

Tire and road wear particles (TRWP) have been shown to represent a large part of anthropogenic particles released into the environment. Nevertheless, the potential ecological risk of TRWP in the different environmental compartments and their potential toxic impacts on terrestrial and aquatic organisms remain largely underinvestigated. Several heavy metals compose TRWP, including Zn, which is used as a catalyst during the vulcanization process of rubber. This study investigated the solubilization potential of metals from cryogenically milled tire tread (CMTT) and TRWP in simulated gastric fluids (SFGASTRIC) and simulated intestinal fluids (SFINTESTINAL) designed to mimic rainbow trout (Oncorhynchus mykiss) gastrointestinal conditions. Our results indicate that the solubilization of heavy metals was greatly enhanced by gastrointestinal fluids compared to that by mineral water. After a 26 h in vitro digestion, 9.6 and 23.0% of total Zn content of CMTT and TRWP, respectively, were solubilized into the simulated gastrointestinal fluids. Coingestion of tire particles (performed with CMTT only) and surrogate prey items (Gammarus pulex) demonstrated that the animal organic matter reduced the amount of bioavailable Zn solubilized from CMTT. Contrastingly, in the coingestion scenario with vegetal organic matter (Lemna minor), high quantities of Zn were solubilized from L. minor and cumulated with Zn solubilized from CMTT.


Asunto(s)
Metales Pesados , Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Digestión , Cinética , Goma
6.
Environ Toxicol Chem ; 40(11): 3010-3018, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34506633

RESUMEN

Polar organic chemical integrative sampler (POCIS) devices have been suggested for measuring time-weighted averages (TWAs) of contaminant concentrations resulting from chemical leak accidents in aquatic environments. However, the response of the POCIS device in the emergency condition in natural water remains unclear. The response of the POCIS device to contaminant fluctuation was investigated using a chamber test with tap water and a channel test with natural water. The fluctuation in the chamber and the channel simulated the condition of river water under a chemical leak scenario (maximum concentration: 1-10 µg L-1 , half-life: 1 day). The target chemicals were neonicotinoid pesticides (dinotefuran, clothianidin, thiamethoxam, imidacloprid, acetamiprid, and thiacloprid) and bisphenol A. The ratio of the POCIS measured value to the TWA values of grab samplings (POCIS/TWA) for the channel test (temperature: 15 °C, flow velocity: 15 cm s-1 ) ranged from 61% (clothianidin) to 133% (thiacloprid). The results indicated that the POCIS device could be effectively used as a monitoring device in an aquatic environment under the chemical leak scenario over a time period of more than14 days. In addition, the POCIS/TWA ratios obtained from the chamber test and the channel test were in the range of 50-150%. Thus, the chamber test could be used to evaluate the POCIS device at a low cost. Environ Toxicol Chem 2021;40:3010-3018. © 2021 SETAC.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Compuestos Orgánicos , Plaguicidas/análisis , Agua , Contaminantes Químicos del Agua/análisis
7.
Sci Total Environ ; 785: 147284, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957588

RESUMEN

Estrogenic compounds are widely released to surface waters and may cause adverse effects to sensitive aquatic species. Three hormones, estrone, 17ß-estradiol and 17α-ethinylestradiol, are of particular concern as they are bioactive at very low concentrations. Current analytical methods are not all sensitive enough for monitoring these substances in water and do not cover mixture effects. Bioassays could complement chemical analysis since they detect the overall effect of complex mixtures. Here, four chemical mixtures and two hormone mixtures were prepared and tested as reference materials together with two environmental water samples by eight laboratories employing nine in vitro and in vivo bioassays covering different steps involved in the estrogenic response. The reference materials included priority substances under the European Water Framework Directive, hormones and other emerging pollutants. Each substance in the mixture was present at its proposed safety limit concentration (EQS) in the European legislation. The in vitro bioassays detected the estrogenic effect of chemical mixtures even when 17ß-estradiol was not present but differences in responsiveness were observed. LiBERA was the most responsive, followed by LYES. The additive effect of the hormones was captured by ERα-CALUX, MELN, LYES and LiBERA. Particularly, all in vitro bioassays detected the estrogenic effects in environmental water samples (EEQ values in the range of 0.75-304 × EQS), although the concentrations of hormones were below the limit of quantification in analytical measurements. The present study confirms the applicability of reference materials for estrogenic effects' detection through bioassays and indicates possible methodological drawbacks of some of them that may lead to false negative/positive outcomes. The observed difference in responsiveness among bioassays - based on mixture composition - is probably due to biological differences between them, suggesting that panels of bioassays with different characteristics should be applied according to specific environmental pollution conditions.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Bioensayo , Disruptores Endocrinos/análisis , Monitoreo del Ambiente , Estrógenos/análisis , Estrógenos/toxicidad , Estrona , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
Environ Sci Pollut Res Int ; 28(9): 11697-11707, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33438128

RESUMEN

In this study, three different passive sampling receiving phases were evaluated, with a main focus on the comparability of established styrene-divinylbenzene reversed phase sulfonated (SDB-RPS) sampling phase from Empore™ (E-RPS) and novel AttractSPE™ (A-RPS). Furthermore, AttractSPE™ hydrophilic-lipophilic balance (HLB) disks were tested. To support sampling phase selection for ongoing monitoring needs, it is important to have information on the characteristics of alternative phases. Three sets of passive samplers (days 1-7, days 8-14, and days 1-14) were exposed to a continuously exchanged mixture of creek and rainwater in a stream channel system under controlled conditions. The system was spiked with nine pesticides in two peak scenarios, with log KOW values ranging from approx. - 1 to 5. Three analytes were continuously spiked at a low concentration. All three sampling phases turned out to be suitable for the chosen analytes, and, in general, uptake rates were similar for all three materials, particularly for SDB-RPS phases. Exceptions concerned bentazon, where E-RPS sampled less than 20% compared with the other phases, and nicosulfuron, where HLB sampled noticeably more than both SDB-RPS phases. All three phases will work for environmental monitoring. They are very similar, but differences indicate one cannot just use literature calibration data and transfer these from one SDB phase to another, though for most compounds, it may work fine.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Interacciones Hidrofóbicas e Hidrofílicas , Plaguicidas/análisis , Ríos , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Process Impacts ; 22(11): 2244-2255, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33034330

RESUMEN

Natural estrogens such as 17α-estradiol (E2α), 17ß-estradiol (E2ß), estrone (E1), and estriol (E3), released to surface waters from both urban and agricultural sources, are endocrine disrupting for fish. Here, we assess the prevalence of livestock farming derived natural estrogens in tributaries and ponds in the agriculturally dominated catchment of Lake Baldegg, Switzerland. Passive samplers were deployed in the main tributary and daily time-proportional water samples were collected in five tributaries for 30 days at the beginning of the vegetation period. Furthermore, we took grab samples of 12 ponds in the catchment. Aqueous samples were liquid-liquid extracted, derivatized, and analysed with LC-MS/MS and stream water samples additionally with ERα-CALUX, a bioassay for assessing total estrogenic activity. Natural estrogens were regularly detected, with mean concentrations ranging from below the limit of detection to 0.55 ng L-1 for E2ß and E1, respectively, and passive sampling and bioassay results largely confirmed these findings. Monte Carlo simulated mean natural estrogen concentrations underestimated measured ones by a factor of three to 11. An agricultural area's hydrological contribution and connectivity to surface waters seemed to be more important for the development of estrogen concentrations in streams than livestock densities in a catchment or the actual loads of slurry applied. Pond water occasionally contained natural estrogens in concentrations up to 8.6 ng L-1 for E2α. The environmental quality standards of the European Union (0.4 ng L-1 for E2ß and 3.6 ng L-1 for E1) were never exceeded for longer than a day in tributaries, but E1 reached critical concentrations for aquatic organisms in ponds.


Asunto(s)
Estrógenos , Contaminantes Químicos del Agua , Agricultura , Animales , Cromatografía Liquida , Monitoreo del Ambiente , Estradiol/análisis , Estrógenos/análisis , Ganado , Suiza , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 740: 140376, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32927560

RESUMEN

Pesticide concentrations in agricultural streams are often characterised by a low level of baseline exposure and episodic peak concentrations associated with heavy rainfall events. Traditional sampling methods such as grab sampling, which are still largely used in governmental monitoring, typically miss peak concentrations. Passive sampling represents a cost-efficient alternative but requires the additional determination of sampling rates to calculate time-weighted average (TWA) water concentrations from the accumulated pesticide mass in the sampler. To date, sampling rates have largely been determined in experiments with constant exposure, which does not necessarily reflect field situations. Using Empore styrene-divinylbenzene (SDB) passive sampler disks mounted in metal holders, we determined sampling rates for 42 organic pesticides, of which 27 sampling rates were lacking before. The SDB disks were in an artificial channel system exposed to a field-relevant pesticide peak. We used an open-source algorithm to estimate coefficients of equations for the accumulated pesticide mass in disks and to determine exposure time-dependent sampling rates. These sampling rates ranged from 0.02 to 0.98 L d-1 and corresponded to those from previous studies determined with constant exposure. The prediction of sampling rates using compound properties was unreliable. Hence, experiments are required to determine reliable sampling rates. We discuss the use of passive sampling to estimate peak concentrations. Overall, our study provides sampling rates and computer code to determine these under peak exposure designs and suggests that passive sampling is suitable to estimate peak pesticide concentrations in field studies.

13.
Anal Bioanal Chem ; 412(19): 4527-4536, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32458016

RESUMEN

Food contact materials (FCM) may contain complex mixtures of estrogenic chemicals. A yeast estrogen screen performed on high performance thin-layer chromatography plates (planar-YES, P-YES) is promising for analysis of such mixtures, as it could allow for better elucidation of effects compared with established methods in microtiter plates. However, the P-YES has not been directly compared with established methods. We compared the performance of a microtiter plate YES (lyticase-YES, L-YES) to P-YES on silica gel HPTLC plates using 17ß-estradiol (E2), 20 chemicals representative of migrants from plastic FCM, and three migrates of coated metal food cans. Effective doses (ED10, ED50) and estradiol equivalencies were calculated for each chemical. Thirteen chemicals had calculable EDs in the L-YES or P-YES, with average EDs 13-fold (range 0.63-36) more potent in P-YES than in the L-YES. Normalized to E2, the median estrogenicity was within 1.5-fold (0.43-8.8) between the assays. Therefore, P-YES was as or more sensitive than L-YES but potencies relative to E2 were comparable between assays. With chromatography, the P-YES detected estrogenicity in coated metal cans, effects that were unmeasurable in L-YES. With the sample preparation methods used in this study, both YES assays are sufficiently sensitive to detect bisphenol A below the specific migration limit for plastic packaging (0.05 mg/kg food). This study demonstrates that P-YES outperforms L-YES because it is more sensitive, provides comparable estradiol equivalents, and circumvents confounding mixture effects. The P-YES will be useful for routine monitoring of FCM and toxicant identification in problematic materials. Graphical abstract.


Asunto(s)
Disruptores Endocrinos/efectos adversos , Disruptores Endocrinos/química , Estrógenos/efectos adversos , Estrógenos/química , Saccharomyces cerevisiae/efectos de los fármacos , Compuestos de Bencidrilo/efectos adversos , Compuestos de Bencidrilo/química , Cromatografía en Capa Delgada/métodos , Embalaje de Alimentos , Fenoles/efectos adversos , Fenoles/química , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/efectos adversos , Contaminantes Químicos del Agua/química
14.
PLoS One ; 14(12): e0226278, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31881027

RESUMEN

Wastewater treatment plant effluents are important point sources of micropollutants. To assess how the discharge of treated wastewater affects the ecotoxicity of small to medium-sized streams we collected water samples up- and downstream of 24 wastewater treatment plants across the Swiss Plateau and the Jura regions of Switzerland. We investigated estrogenicity, inhibition of algal photosynthetic activity (photosystem II, PSII) and growth, and acetylcholinesterase (AChE) inhibition. At four sites, we measured feeding activity of amphipods (Gammarus fossarum) in situ as well as water flea (Ceriodaphnia dubia) reproduction in water samples. Ecotoxicological endpoints were compared with results from analyses of general water quality parameters as well as a target screening of a wide range of organic micropollutants with a focus on pesticides and pharmaceuticals using liquid chromatography high-resolution tandem mass spectrometry. Measured ecotoxicological effects in stream water varied substantially among sites: 17ß-estradiol equivalent concentrations (EEQbio, indicating the degree of estrogenicity) were relatively low and ranged from 0.04 to 0.85 ng/L, never exceeding a proposed effect-based trigger (EBT) value of 0.88 ng/L. Diuron equivalent (DEQbio) concentrations (indicating the degree of photosystem II inhibition in algae) ranged from 2.4 to 1576 ng/L and exceeded the EBT value (70 ng/L) in one third of the rivers studied, sometimes even upstream of the WWTP. Parathion equivalent (PtEQbio) concentrations (indicating the degree of AChE inhibition) reached relatively high values (37 to 1278 ng/L) mostly exceeding the corresponding EBT (196 ng/L PtEQbio). Decreased feeding activity by amphipods or decreased water flea reproduction downstream compared to the upstream site was observed at one of four investigated sites only. Results of the combined algae assay (PSII inhibition) correlated best with results of chemical analysis for PSII inhibiting herbicides. Estrogenicity was partly and AChE inhibition strongly underestimated based on measured steroidal estrogens respectively organophosphate and carbamate insecticides. An impact of dissolved organic carbon on results of the AChE inhibition assay was obvious. For this assay more work is required to further explore the missing correlation of bioassay data with chemical analytical data. Overall, the discharge of WWTP effluent led to increased estrogenicity, PSII and AChE inhibition downstream, irrespective of upstream land use.


Asunto(s)
Anfípodos/fisiología , Cladóceros/fisiología , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Aguas Residuales/análisis , Aguas Residuales/toxicidad , Acetilcolinesterasa/metabolismo , Proteínas Algáceas/efectos de los fármacos , Anfípodos/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Cromatografía Liquida , Cladóceros/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Reproducción/efectos de los fármacos , Ríos/química , Suiza , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua
15.
Water Res ; 165: 114966, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31437634

RESUMEN

Passive sampling is a well-established tool for monitoring time-weighted average concentrations of polar and semi-polar organic contaminants in streams at flow velocities between 0.1 and 0.4 m s-1. However, its application under low-flow conditions (10-5 to 0.01 m s-1) - as encountered in hyporheic zones - has been scarcely reported. In this study, 3 novel passive sampler configurations were developed for the monitoring of (semi-)polar organic pollutants and related transformation products across the water-sediment interface and thus across varying hydrodynamic conditions. Their design was inspired by Chemcatcher and diffusive gradients in thin films for organics. To determine the most optimal sampler design, an uptake experiment was completed involving the 3 novel passive sampler configurations and a reference Chemcatcher in polar configuration. The experiments consisted of a circular flume that simulated the main channel of a stream and an aquarium with stagnant water that represented the underlying hyporheic zone. The systems were exposed to 192 organic pollutants at environmental concentrations, and the samplers were then collected, extracted and analyzed using liquid chromatography high-resolution mass spectrometry after 2, 6 and 14 days. The configuration that was most insensitive to different hydrodynamic conditions consisted of a reversed-phase sulfonated styrenedivinylbenzene disk as the receiving phase that was covered by an agarose diffusion gel and topped with a polyethersulfone membrane filter. To further evaluate its environmental application, samplers were installed downstream of a sewage treatment plant located at an urban stream in Berlin, Germany (Erpe). The samplers were mounted on custom-made holders which were subsequently embedded in the stream bed to position samplers above (0.30 m) and within the sediment (-0.15/-0.30/-0.45 m) for 11 days. Target and suspect screening workflows were then applied to identify common concentration patterns and link parent attenuation to transformation product formation. A total of 104 concentration profiles were determined, suggesting the efficiency of the proposed sampling strategy in the water-sediment interface. Valsartan acid was the only known transformation product indicative of hyporheic zone-driven attenuation as its concentration in porewater by far exceeded its concentration in surface water. Similar patterns were observed for a larger list of suspected transformation products, of which a sotalol transformation product was tentatively identified. Overall, the established sampling methodology can be effectively used to quantify organic contaminants during low-flow conditions and is suitable for the characterization of attenuation patterns of organic pollutants in hyporheic zones.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Berlin , Cromatografía Liquida , Monitoreo del Ambiente , Alemania
16.
BMC Genomics ; 20(1): 583, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307399

RESUMEN

The synthetic 17α-ethinylestradiol (EE2) is a common estrogenic pollutant that has been suspected to affect the demography of river-dwelling salmonids. One possibility is that exposure to EE2 tips the balance during initial steps of sex differentiation, so that male genotypes show female-specific gene expression and gonad formation. Here we study EE2 effects on gene expression around the onset of sex differentiation in a population of European grayling (Thymallus thymallus) that suffers from sex ratio distortions. We exposed singly-raised embryos to one dose of 1 ng/L EE2, studied gene expression 10 days before hatching, at the day of hatching, and around the end of the yolk-sac stage, and related it to genetic sex (sdY genotype). We found that exposure to EE2 affects expression of a large number of genes, especially around hatching. These effects were strongly sex-dependent. We then raised fish for several months after hatching and found no evidence of sex reversal in the EE2-exposed fish. We conclude that ecologically relevant (i.e. low) levels of EE2 pollution do not cause sex reversal by simply tipping the balance at early stages of sex differentiation, but that they interfere with sex-specific gene expression.


Asunto(s)
Disruptores Endocrinos/toxicidad , Estrógenos/toxicidad , Etinilestradiol/toxicidad , Expresión Génica/efectos de los fármacos , Salmonidae/genética , Diferenciación Sexual/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Masculino , Salmonidae/embriología , Diferenciación Sexual/genética , Razón de Masculinidad
17.
Water Res ; 161: 540-548, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31233966

RESUMEN

Studies worldwide have demonstrated through in vitro bioassays and chemical analysis that endocrine-disrupting chemicals (EDCs) can accumulate in river sediments. However, remobilization of sediment-bound EDCs due to bioturbation or re-suspension during flood events remains poorly understood. The aim of this study was to evaluate the bioavailability of EDCs, more specifically estrogenic compounds (EC), from sediment under turbulent conditions using a passive sampling approach. Sediment was sampled along the Luppe River, Germany, previously described as a "hotspot" for ECs. The concentration of target ECs and estrogenic activity were investigated using chemical analysis (LC MS/MS) in addition to a novel screening tool (planar Yeast Estrogen Screen; p-YES) that utilizes high performance thin-layer chromatography plates in combination with an in vitro bioassay (YES). Estrone (50%, E1) and nonylphenol (35%, NP) accounted for the majority of estrogenic activity reported of up to 20 ±â€¯2.4 µg E2 equivalents per kg dry weight in the Luppe sediments. Two types of passive samplers (polar organic chemical integrative sampler (POCIS) and Chemcatcher) were used to investigate the bioavailability of ECs from suspended sediment under laboratory conditions. NP, E1, E2 and ethynylestradiol (EE2) were remobilized from Luppe sediment when subjected to turbulent conditions, such as in a flood event, and were readily bioavailable at ecotoxicologically relevant concentrations (NP 18 µg/L, E1 14 ng/L, E2 0.2 ng/L, EE2 0.5 ng/L).


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Disponibilidad Biológica , Monitoreo del Ambiente , Estrógenos , Inundaciones , Sedimentos Geológicos , Alemania , Ríos , Espectrometría de Masas en Tándem
18.
Water Res ; 160: 350-360, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158617

RESUMEN

Contaminants in sewer overflows can contribute to exceedances of environmental quality standards, thus the quantification of contaminants during rainfall events is of relevance. However, monitoring is challenged by i) high spatiotemporal variability of contaminants in events of hard-to-predict durations, and ii) a large number of remote sites, which would imply enormous efforts with traditional sampling equipment. Therefore, we evaluate the applicability of passive samplers (Empore styrene-divinylbenzene reverse phase sulfonated (SDB-RPS)) to monitor a set of 13 polar organic contaminants. We present calibration experiments at high temporal resolution to assess the rate limiting accumulation mechanisms for short events (<36 h), report parameters for typical sewer conditions and compare passive samplers with composite water samples in a field study (three locations, total 10 events). With sampling rates of 0.35-3.5 L/d for 1 h reference time, our calibration results indicate a high sensitivity of passive samplers to sample short, highly variable sewer overflows. The contaminant uptake kinetic shows a fast initial accumulation, which is not well represented with the typical first-order model. Our results indicate that mass transfer to passive samplers is either controlled by the water boundary layer and the sorbent, or by the sorbent alone. Overall, passive sampler concentration estimates are within a factor 0.4 to 3.1 in comparison to composite water samples in the field study. We conclude that passive samplers are a promising approach to monitor a large number of discharge sites although it cannot replace traditional stormwater quality sampling in some cases (e.g. exact load estimates, high temporal resolution). Passive samplers facilitate identifying and prioritizing locations that may require more detailed investigations.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Contaminación Ambiental , Cinética , Agua
19.
Evol Appl ; 12(5): 940-950, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31080506

RESUMEN

One of the most common and potent pollutants of freshwater habitats is 17-alpha-ethynylestradiol (EE2), a synthetic component of oral contraceptives that is not completely eliminated during sewage treatment and that threatens natural populations of fish. Previous studies found additive genetic variance for the tolerance against EE2 in different salmonid fishes and concluded that rapid evolution to this type of pollution seems possible. However, these previous studies were done with fishes that are lake-dwelling and hence typically less exposed to EE2 than river-dwelling species. Here, we test whether there is additive genetic variance for the tolerance against EE2 also in river-dwelling salmonid populations that have been exposed to various concentrations of EE2 over the last decades. We sampled 287 adult brown trout (Salmo trutta) from seven populations that show much genetic diversity within populations, are genetically differentiated, and that vary in their exposure to sewage-treated effluent. In order to estimate their potential to evolve tolerance to EE2, we collected their gametes to produce 730 experimental families in blockwise full-factorial in vitro fertilizations. We then raised 7,302 embryos singly in 2-ml containers each and either exposed them to 1 ng/L EE2 (an ecologically relevant concentration, i.e., 2 pg per embryo added in a single spike to the water) or sham-treated them. Exposure to EE2 increased embryo mortality, delayed hatching time, and decreased hatchling length. We found no population differences and no additive genetic variance for tolerance to EE2. We conclude that EE2 has detrimental effects that may adversely affect population even at a very low concentration, but that our study populations lack the potential for rapid genetic adaptation to this type of pollution. One possible explanation for the latter is that continuous selection over the last decades has depleted genetic variance for tolerance to this synthetic stressor.

20.
Anal Bioanal Chem ; 411(10): 2057-2069, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30734083

RESUMEN

Ecotoxicological screening of surface waters can involve multiple analyses using multiple bioassay and chemical analytical methods that require enriched samples to reach low concentrations. Such broad screening of the same sample necessitates sufficient sample volume-typically several liters-to produce a sufficient amount of enriched sample. Often, this is achieved by performing parallel solid-phase extractions (SPE) where extracts are combined into a pool-this is a laborious process. In this study, we first validated our existing SPE method for the chemical recovery of an extended set of compounds. We spiked four estrogenic compounds and 11 herbicides to samples from independent rivers (1 L) and wastewater treatment plant effluents (0.5 L). Then, we investigated the effect of increased sample loading of the SPE cartridges on both chemical and biological recoveries by comparing the validated volumes with four times larger sample volumes (i.e., 4 L river water and 2 L effluent). Samples were analyzed by LC-MS/MS and three bioassays: an estrogen receptor transactivation assay (ERα-CALUX), the combined algae test, and a bacterial bioluminescence inhibition assay. Our existing SPE method was found to be suitable for enriching the extended set of estrogens and herbicides in river water and effluents with near to perfect chemical recoveries (~ 100%), except for the herbicide metribuzin (46 ± 19%). In the large volume river and effluent samples, the biological activities and concentrations of the spiked compounds were between 87 and 104% of those measured with the lower sample loading, which is adequate. In addition, the ratio between the large and original volume SPE method for the non-target endpoint (bacterial bioluminescence inhibition) was acceptable (on average 82 ± 9%). Results indicate that our current water extraction method can be applied to up to four times larger sample volumes, resulting in four times more extract volumes, without significant reductions in recoveries for the tested estrogens and herbicides. Graphical abstract ᅟ.


Asunto(s)
Monitoreo del Ambiente/métodos , Estrógenos/aislamiento & purificación , Herbicidas/aislamiento & purificación , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Bacterias/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Cromatografía Liquida/métodos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Estrógenos/toxicidad , Herbicidas/toxicidad , Ríos/química , Espectrometría de Masas en Tándem/métodos , Pruebas de Toxicidad/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...